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Abstract—Artifacts can result when reconstructing a dynamic image se-
quence from inconsistent, as well as insufficient and truncated, cone beam
SPECT projection data acquired by a slowly rotating gantry. The artifacts
can lead to biases in kinetic model parameters estimated from time-activity
curves generated by overlaying volumes of interest on the images. However,
the biases in time-activity curve estimates and subsequent kinetic parame-
ter estimates can be reduced significantly by first modeling the spatial and
temporal distribution of the radiopharmaceutical throughout the projected
field of view, and then estimating the time-activity curves directly from the
projections. This approach is potentially useful for clinical SPECT studies
involving slowly rotating gantries, particularly those using a single-detector
system or body contouring orbits with a multi-detector system.

We have implemented computationally efficient methods for fully 4-D di-
rect estimation of spatiotemporal distributions from dynamic SPECT pro-
jection data. Temporal B-splines providing various orders of temporal con-
tinuity, as well as various time samplings, were used to model the time-
activity curves for segmented blood pool and tissue volumes in simulated
cone beam and parallel beam cardiac data acquisitions. Least squares es-
timates of time-activity curves were obtained quickly using a workstation.
Given faithful spatial modeling, accurate curve estimates were obtained us-
ing cubic, quadratic, or linear B-splines and a relatively rapid time sam-
pling during initial tracer uptake. From these curves, kinetic parameters
were estimated accurately for noiseless data and with some bias for noisy
data. A preliminary study of spatial segmentation errors showed that spa-
tial model mismatch adversely affected quantitative accuracy but also re-
sulted in structured errors (projected model vs. raw data) which were easily
detected in our simulations. This suggests iterative refinement of the spatial
model to reduce structured errors as an area of future research.

Index Terms—Dynamic SPECT, fully 4-D reconstruction, kinetic param-
eter estimation.

I. I NTRODUCTION

THE estimation of time-activity curves and kinetic model
parameters directly from projection data is potentially use-

ful for clinical dynamic single photon emission computed to-
mography (SPECT) studies, particularly in those clinics which
have only single-detector systems and thus are not able to per-
form rapid tomographic acquisitions. Even with a three-detector
system, a patient study that utilizes body contouring orbits can
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take 45–60 sec to obtain one full tomographic acquisition. Be-
cause the radiopharmaceutical distribution changes while the
SPECT gantry rotates, projections at different angles come from
different tracer distributions. A dynamic image sequence recon-
structed from the inconsistent projections acquired by a slowly
rotating gantry can contain artifacts that lead to biases in ki-
netic parameters estimated from time-activity curves generated
by overlaying regions of interest on the images. If cone beam
collimators are used and the focal point of the collimators al-
ways remains in a particular image plane, additional artifacts
can arise in other image planes reconstructed using insufficient
projection samples [1]. If the projection samples truncate the
patient’s body, this can also result in additional image artifacts.
To overcome these sources of bias in conventional image based
dynamic data analysis, we and others have been investigating
the estimation of time-activity curves and kinetic model param-
eters directly from dynamic SPECT projection data by modeling
the spatial and temporal distribution of the radiopharmaceutical
throughout the projected field of view [2].

Building on research by Carson [3] and by Formiconi [4] into
direct time-activity curve estimation for regions of interest, we
have used simulated data to show that unbiased kinetic param-
eter estimates for one-compartment models can be obtained di-
rectly from parallel beam and cone beam SPECT projections,
given the blood input function and the proper segmentation of
volumes encompassing the projected field of view [5–7]. These
simulations systematically incorporated physical effects such as
attenuation (Table I), and led to the development of methods
which were used to analyze a dynamic99mTc-teboroxime pa-
tient study [8]. For this patient study, the blood input function
was estimated directly from the projections and spatial models
for the left ventricular myocardium, blood pool, liver, and back-
ground tissue were determined by automatically segmenting a
dynamic volumetric image sequence reconstructed from the in-
consistent projection data.

In related work, Chiaoet al [9, 10] have jointly estimated
spatial boundaries for myocardial regions of interest and ki-
netic parameters for one-compartment models from simulated
single-slice transaxial positron emission tomography (PET) pro-
jections, using a blood input function that was estimated from
the data. In addition to these methods based on segmented re-
gions and volumes, a number of researchers have reconstructed
single-slice and multi-slice parametric images from SPECT and
PET data for a variety of kinetic models [11–16].
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TABLE I

SUMMARY OF PROJECTION GEOMETRIES, PHYSICAL MODELING, AND COMPUTATIONAL COMPLEXITY FOR OUR PREVIOUS WORK[5–8] AND THIS WORK.

THE ABBREVIATIONS FOR THE GEOMETRIES ARESSP,SINGLE-SLICE PARALLEL BEAM; MSP,MULTI -SLICE PARALLEL BEAM; AND C, CONE BEAM. IN

SECTION II OF THIS WORK, THE NUMBER OF PROJECTION SAMPLES IS DENOTED BY THE PRODUCT OF FACTORS, IJK , AND THE NUMBER OF LINEAR

PARAMETERS IS DENOTED BY THE PRODUCT OF FACTORS, MN .

previous work this work
[5] [6] [7] [8]

projection geometry SSP C/MSP SSP MSP C/MSP

input function known yes yes yes no no
liver in field of view no no yes yes yes

attenuation correction no no yes yes yes
point response modeling no no no no yes

scatter modeling no no no no no

projection samples (×106) 0.072 1.7 0.12 7.6 IJK = 3.7

linear parameters 9 9 9 8 MN = 96

elements in system matrixF (×106) 0.65 16 1.0 61 IJKMN = 350

multiply-and-adds forFTF (×106) 3.2 78 5.2 270 IJK
MN(MN+1)

2
= 17, 000

In our previous work, we formulated a nonlinear estimation
problem in which a set of linear parameters was estimated us-
ing least squares, given iteratively estimated values for the non-
linear washout parameters for one-compartment kinetic mod-
els [5–7]. As discussed in Section II and summarized in Ta-
ble I, the computational resources required for the straightfor-
ward solution of the embedded linear least squares subproblem
grow linearly with the number of SPECT projection measure-
ments, and are nontrivial by today’s standards for typical patient
datasets. In particular, the memory required to analyze a dy-
namic99mTc-teboroxime patient study necessitated the use of
a Cray J90 at the National Energy Research Scientific Comput-
ing (NERSC) Center [8]. To make matters worse, the compu-
tational requirements for the straightforward solution increase
quadratically with the number of linear parameters. Thus, a
more computationally efficient solution is needed to perform
more detailed spatiotemporal modeling and to develop further
our direct kinetic parameter estimation methods, using currently
available computers.

In this work the primary new development, which we re-
port in Section II, is a computationally efficient method which
extends Formiconi’s least squares algorithm [4] so that fully
four-dimensional (4-D) direct spatiotemporal distribution esti-
mation from projections can be performed quickly on a work-
station with a modest amount of memory. This method is used
with simulated data in Section III to reconstruct time-activity
curves for segmented volumes encompassing the projected field
of view. This method can be applied to projection data acquired
using any collimator or orbit geometry, provided that the data
yield a preliminary image reconstruction which can be used to
segment the activity distribution within the projected field of
view.

The secondary result, which we report in Section III, is a
preliminary study of the biases that result from modeling var-
ious orders of temporal continuity and using various time sam-
plings when estimating time-activity curves directly from dy-
namic cone beam and parallel beam SPECT projection data.
The effects of spatial segmentation errors are also studied. In
Section III-A, piecewise cubic, quadratic, linear, and constant

B-splines [17] are used to model the time-activity curves for
the blood input, three myocardial volumes of interest, liver,
and background tissue in simulated data. Attenuation and ge-
ometric point response are modeled, but scatter is not. Seg-
mented volumes encompassing the projected field of view are
modeled to contain spatially uniform activity concentrations. In
Section III-B, a Monte Carlo simulation is used to study the
effects of noisy projections on kinetic parameter estimates for
one-compartment models obtained from the spline time-activity
curves for the blood input function and the myocardial and liver
volumes. This “semi-direct” approach, in which compartmental
modeling is done subsequent to direct time-activity curve esti-
mation, complements our earlier work, in which compartmen-
tal model parameters were estimated directly from projection
data [5–8]. In Section III-C, the effects of failing to segment
myocardial defects and inaccurately localizing the myocardial
walls are studied with simulated data.

The methodology presented in Section III builds on the work
of Chenet al [18], in which a spline fit to the blood input func-
tion and kinetic parameters for a compartmental model were
jointly estimated from time-activity curves generated by over-
laying regions of interest on a simulated temporal sequence of
reconstructed PET images. Nicholset al [19] have also used
splines to model the time course of activity in volume elements
(voxels) reconstructed from dynamic list mode PET data.

II. COMPUTATIONALLY EFFICIENT ESTIMATION OF

SPATIOTEMPORAL DISTRIBUTIONS DIRECTLY FROM

PROJECTIONS

Time varying activity concentrations within volumes of in-
terest encompassing the projected field of view can be mod-
eled by selecting a set of temporal basis functions capable of
representing typical time variations and having desired smooth-
ness properties. For example, to fit the blood input function
Chen et al [18] used five piecewise polynomial spline func-
tions defined over four contiguous time segments. The segments
were determined by varying their endpoints in a prescribed fash-
ion and using the set which yielded the smallest weighted sum
of squared errors, averaged over 100 simulated data sets. To
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model the time course of activity in voxels reconstructed from
dynamic list mode PET data, Nicholset al [19] first calculated
the temporal histogram for the all of the data. Then, segment
endpoints for cubic B-splines were defined by selecting a set
which yielded approximately equal arc lengths along the result-
ing time-activity curve. In the simulations in Section III, we use
16 B-splines spanning 15 time segments having geometrically
increasing length. The order of the splines and the length of the
initial time segment are varied in a prescribed fashion and the
errors in the time-activity curve estimates and the subsequent
kinetic model parameter estimates are compared.

Similarly, the spatially nonuniform activity concentration
within a particular volume can be modeled by selecting an ap-
propriate set of spatial basis functions defined within the vol-
ume. For example, to analyze a99mTc-teboroxime patient study,
we used indicator functions for the left ventricular myocardium,
blood pool, liver, and background tissue [8]. These were deter-
mined automatically by applying a 4-D edge detection operator
to the dynamic image sequence reconstructed from the incon-
sistent projection data. In the simulations in Section III, we use
indicator functions for the known anatomy of a mathematical
phantom.

Given a set of temporal basis functions and sets of spatial ba-
sis functions for the volumes, coefficients for the resulting spa-
tiotemporal basis functions can be estimated directly from the
projections using the following generalization of Formiconi’s
algorithm, which was developed for temporally static distribu-
tions [4].

The projection of themth spatial basis function along rayi at
anglej is denoted byum

ij , and the integral of thenth temporal
basis function during the time interval associated with anglej
of rotationk is denoted byvn

jk. The projection equations can be
expressed as

pijk =
M∑

m=1

N∑
n=1

amnu
m
ijv

n
jk, (1)

where thepijk are the modeled projections, theamn are the lin-
ear coefficients associated with the time integrals of the projec-
tions of the spatiotemporal basis functions,M is the number of
spatial basis functions, andN is the number of temporal ba-
sis functions. The criterion which is minimized by varying the
linear coefficientsamn associated with the time integrals of the
projections of the spatiotemporal basis functions is the weighted
sum of squares function

χ2 =
I∑

i=1

J∑
j=1

K∑
k=1

(p∗ijk − pijk)2

Wijk
, (2)

where thep∗ijk are the measured projections, theWijk are
weighting factors,I is the number of projection rays per angle,
J is the number of angles per rotation, andK is the number of
rotations. Typically, the weighting factors are either unity for an
unweighted fit or the estimated variances of the projections for
a weighted fit.

Equations (1) and (2) can be rewritten in matrix form as

p = Fa (3)

and

χ2 = (p∗ − Fa)TW(p∗ − Fa), (4)

respectively, wherep is anIJK element column vector whose
[i + (j − 1)I + (k − 1)IJ ]th element ispijk, F is anIJK ×
MN matrix whose{[i + (j − 1)I + (k − 1)IJ ], [m + (n −
1)M ]}th element isum

ij v
n
jk, a is anMN element column vector

whose[m+(n−1)M ]th element isamn, p∗ is anIJK element
column vector whose[i + (j − 1)I + (k − 1)IJ ]th element is
p∗ijk, andW is anIJK×IJK diagonal matrix whose[i+(j−
1)I + (k − 1)IJ ]th diagonal element is1/Wijk. The criterion,
χ2, is minimized by the vector of spatiotemporal basis function
coefficients

â = (FTWF)−1FTWp∗. (5)

The covariance matrix for the coefficientsâ is

cov(â) = (FTWF)−1FTWcov(p∗)WF(FTWF)−1, (6)

where cov(p∗) is the covariance matrix for the measured projec-
tions. Given an estimate of cov(p∗), estimates of the statistical
uncertainties of the coefficientŝa are the square roots of the di-
agonal elements of the covariance matrix given by equation (6).
In general, the errors in the coefficients are correlated and the
covariance matrix given by equation (6) has nonzero elements
off the diagonal.

Storing the entire matrixF and calculating the symmetric
matrix FTWF using straightforward matrix multiplication is
computationally inefficient. For example, about 3.7 million pro-
jection samples result from a 15 minute dynamic SPECT study
such as that simulated in Section III-A, in which data are ac-
quired for 64 transverse× 32 axial rays per angle (I = 2048),
J = 120 angles per rotation, and one rotation per minute
(K = 15) (Table I). Fully 4-D direct spatiotemporal distribution
estimation using 96 basis functions composed fromM = 6 spa-
tial andN = 16 temporal basis functions, such as are used in
the simulations described in Section III-A, involves a matrixF
containingIJKMN ≈ 350 million elements (Table I). For an
unweighted least squares reconstruction of the spatiotemporal
basis function coefficientŝa (i.e., forW an identity matrix), cal-
culating the symmetric matrixFTF using straightforward ma-
trix multiplication requiresIJKMN(MN +1)/2 ≈ 17 billion
multiply-and-add operations, givenF (Table I). This computa-
tional burden is nontrivial for current workstation-class comput-
ers and grows worse quickly as either the numberM of spatial
basis functions or the numberN of temporal basis functions in-
creases.

The burden of storing the matrixF can be reduced signifi-
cantly by storing instead the spatial basis projection factorsum

ij

and the temporal basis integral factorsvn
jk and calculating the

elements ofF as needed. ForIJM � JKN , this reduces
memory usage by a factor of aboutKN . For the example
above with{I, J,K,M,N} = {2048, 120, 15, 6, 16}, this re-
quires storage of onlyIJM ≈ 1.5 million um

ij factors and
JKN ≈ 29 thousandvn

jk factors and reduces memory usage
by a factor of about 230.

For an unweighted least squares reconstruction of the spa-
tiotemporal basis function coefficientsâ (i.e., forW an identity
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matrix), the symmetricMN × MN matrix FTF can be cal-
culated more efficiently as follows. Denoting the{[m + (n −
1)M ], [m′ + (n′ − 1)M ]}th element ofFTF by φmnm′n′

, one
has

φmnm′n′
=

I∑
i=1

J∑
j=1

K∑
k=1

um
ij v

n
jku

m′
ij v

n′
jk. (7)

Rearranging the summations yields

φmnm′n′
=

J∑
j=1

[
I∑

i=1

um
iju

m′
ij

][
K∑

k=1

vn
jkv

n′
jk

]

=
J∑

j=1

µmm′
j νnn′

j ,

(8)

where the factorsµmm′
j and νnn′

j denote the inner products∑I
i=1 u

m
iju

m′
ij and

∑K
k=1 v

n
jkv

n′
jk, respectively.

The number ofµmm′
j factors isJM(M+1)/2, the number of

νnn′
j factors isJN(N + 1)/2, and the number ofφmnm′n′

fac-
tors isMN(MN+1)/2. It takesI multiply-and-add operations
to calculate eachµmm′

j factor andK multiply-and-add opera-

tions to calculate eachνnn′
j factor. Given theµmm′

j andνnn′
j

factors, it takesJ multiply-and-adds to calculate each of the
φmnm′n′

factors. Thus, theφmnm′n′
can be calculated using just

J [IM(M + 1)+KN(N+1)+MN(MN+1)]/2 multiply-and-
adds. ForI � N2 andK < M2, this reduces the number of op-
erations by a factor of aboutKN2. For the example above with
{I, J,K,M,N} = {2048, 120, 15, 6, 16}, this computationally
efficient calculation ofFTF requires storage of about 19 thou-
sandµmm′

j andνnn′
j factors and about 6 million multiply-and-

add operations, which is a factor of about 2800 less than that
required for straightforward matrix multiplication. For the simu-
lations described in Section III-A, this computationally efficient
calculation took about 2.2 sec on a 194 MHz MIPS R10000-
based Silicon Graphics workstation.

Having addressed the major issues of storingF and calculat-
ing FTF, the next computational hurdle is calculatingFTp∗.
This can be done in a relatively straightforward manner using
(I + 1)JKMN multiply-and-add operations, given theum

ij and
vn

jk factors. The system of equationsFTFâ = FTp∗ can then
be solved efficiently for the spatiotemporal basis function coef-
ficientsâ using the Cholesky decomposition ofFTF [20].

An estimate of the covariance matrix for the unweighted least
squares estimateŝa (equation (6)) can be calculated in the fol-
lowing computationally efficient manner. From this covariance
matrix, the covariance between integrated segments of the spline
models for the time-activity curves for the blood input function
and a tissue uptake function can be estimated, which may be
useful for obtaining more accurate compartmental parameter es-
timates via a weighted least squares fit [21]. In Section III-B,
however, an unweighted least squares fit is performed.

Given an estimatêP of the covariance matrix for the mea-
sured projections and substituting the identity matrix forW in
equation (6), one obtains

cov(â) = (FTF)−1FTP̂F(FTF)−1. (9)

Inverting the symmetricMN×MN matrixFTF is straightfor-
ward, given its Cholesky decomposition. Taking the measured
projections to be independent Poisson random variables, an es-
timateP̂ of their covariance matrix is theIJK× IJK diagonal
matrix having the estimated projection vectorp̂ = Fâ along the
diagonal. Denoting the{[m+(n−1)M ], [m′+(n′−1)M ]}th el-
ement of the symmetricMN×MN matrixFTP̂F byψmnm′n′

,
one has

ψmnm′n′
=

I∑
i=1

J∑
j=1

K∑
k=1

um
ij v

n
jkp̂ijku

m′
ij v

n′
jk, (10)

wherep̂ijk is the[i+ (j− 1)I + (k− 1)IJ ]th element of the es-
timated projection vector̂p. Rearranging the summations yields

ψmnm′n′
=

J∑
j=1

K∑
k=1

[
I∑

i=1

um
ij p̂ijku

m′
ij

]
vn

jkv
n′
jk

=
J∑

j=1

K∑
k=1

ωmm′
jk vn

jkv
n′
jk,

(11)

where the factorωmm′
jk denotes the weighted inner product∑I

i=1 u
m
ij p̂ijku

m′
ij .

The number ofωmm′
jk factors isJKM(M + 1)/2 and the

number ofψmnm′n′
factors isMN(MN + 1)/2. Given the

p̂ijk, it takes 2I multiply operations andI add operations
to calculate eachωmm′

jk factor. Given theωmm′
jk factors, it

takes2JK multiplies andJK adds to calculate each of the
ψmnm′n′

factors. Thus, theψmnm′n′
can be calculated using

justJK[IM(M + 1)+MN(MN+1)] multiply operations and
half that number of add operations. Compared to the computa-
tionally efficient calculation ofFTF, this calculation ofFTP̂F
requires about2K times more multiply-and-adds and aboutK
times more memory, given̂P. For the case wherêP is the di-
agonal matrix having the estimated projection vectorp̂ = Fâ
along the diagonal,̂P can be calculated usingIJKM(N + 1)
multiply-and-add operations, which is about(N + 1)/(M + 1)
times more multiply-and-adds than needed to calculateFTP̂F.
Thus, given the calculation time forFTF of about 2.2 sec on
a 194 MHz MIPS R10000-based Silicon Graphics workstation
andK = 15 rotations, such as for the simulations described in
Section III-A, calculation ofFTP̂F should take about 1 min,
given P̂. ForM = 6 spatial basis functions andN = 16 tem-
poral basis functions, calculation ofP̂ should take about 3 min.

For a weighted least squares reconstruction of the spatiotem-
poral basis function coefficientŝa (i.e., for W−1 = cov(p∗)
in equations (5) and (6)), calculatingFTWF takes the same
amount of computation as calculatingFTP̂F. Thus, for dy-
namic SPECT projection data acquired with a relatively small
number of rotationsK, it appears that with these methods a
workstation with a modest amount of memory can be used
to perform a weighted least squares reconstruction of the spa-
tiotemporal basis function coefficientsâ, as well as to obtain an
estimate of the covariance matrix for the coefficients, in a rea-
sonable amount of time. These methods are easily parallelized,
and additional savings in computation can be realized by tak-
ing advantage of the sparsity of nonzero spatial basis projection
factorsum

ij and nonzero temporal basis integral factorsvn
jk.
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B(t)
km
21

km
12

Qm(t)

Fig. 1. Compartmental model for99mTc-teboroxime in the myocardium.B(t)
is the blood input function,Qm(t) is the tracer in tissue volumem, andkm

21
andkm

12 are the rate constants for uptake and washout, respectively.

III. C OMPUTERSIMULATIONS

The Mathematical Cardiac Torso (MCAT) phantom [22], de-
veloped by the University of North Carolina Medical Imaging
Research Laboratory, was used in simulations to evaluate the
ability to estimate spatiotemporal distributions directly from dy-
namic cone beam and parallel beam SPECT projections using
unweighted least squares. In addition, kinetic parameters for
one-compartment models (Figure 1) were estimated from the
resulting spatiotemporal distributions, and a preliminary study
of the effects of spatial segmentation errors was performed.
The MCAT emission phantom (Figure 2a) was composed of
128 contiguous 1.75 mm-thick slices and contained three my-
ocardial volumes of interest (normal myocardium, septal defect,
and lateral defect), blood pool, liver, and background tissue.
These six volumes did not overlap. The myocardial defects were
defined as the intersection of 3 cm diameter spheres with the
septal and lateral walls of the left ventricle. Cone beam and par-
allel beam projections were attenuated using the corresponding
MCAT attenuation phantom (Figure 2b). Single-slice versions
of these phantoms were used in our previous work [7].

The simulated time-activity curves for the six emission vol-
umes are shown in Figure 3. These are the same curves that were
used for the single-slice simulation in our previous work [7].
The time-activity curves for the three myocardial volumes of
interest and the liver were generated by using the blood pool
curve as the input to one-compartment models having kinetics
corresponding to those of teboroxime [23–25]. The background
tissue activity was proportional to the blood pool activity.

The simulated 15 minute data acquisition consisted of
64 transverse× 32 axial rays per angle (I = 2048), J = 120 an-
gles per rotation, and one rotation per minute (K = 15) of a
single-detector system. The projection bins were 7 mm× 7 mm
at the detector for both the cone beam and parallel beam geome-
tries, and the detector was 30 cm from the center of the field of
view. The collimators had a hole diameter of 2 mm, a length of
4 cm, and were offset 1 cm from the detector. The cone beam
collimators had a focal length of 70 cm, which resulted in trun-
cation of the data (Figure 2a). The parallel beam data were not
truncated. Attenuation and geometric point response were mod-
eled using a ray-driven projector with line length weighting [26].
Scatter was not modeled.

A. Spatiotemporal Distribution Estimates

The spatial basis projection factorsum
ij were defined by for-

ward projecting each of the six known emission volumes com-

(a) MCAT emission phantom.

(b) MCAT attenuation phantom.

Fig. 2. Transverse cross sections through (a) the MCAT emission phantom and
(b) the MCAT attenuation phantom. The truncation of data resulting from
the use of cone beam collimators is depicted in (a).
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(a) Cubic B-spline basis functions.
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(b) Quadratic B-spline basis functions.
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(c) Linear B-spline basis functions.
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(d) Constant B-spline basis functions.

Fig. 4. Examples of piecewise cubic (a), quadratic (b), linear (c), and constant (d) B-spline basis functions used to model time-activity curves. Sixteen splines were
used to span 15 time segments having geometrically increasing length. The thirteenth spline is shown as a solid curve. The initial time segment lengthfor the
splines shown here is 10 sec.

posing the MCAT phantom (Figure 2a). Each emission vol-
ume was modeled to contain spatially uniform activity (i.e., each
volume was represented by a spatial indicator function), which
yieldedM = 6 sets of spatial basis projection factors.

The temporal basis integral factorsvn
jk were defined by in-

tegratingN = 16 splines spanning 15 time segments having
geometrically increasing length (Figure 4). Piecewise cubic,
quadratic, linear, and constant B-splines were used with ini-
tial time segment lengths ranging between 2.5–60 sec (Table II).
The shorter initial time segment lengths provided a higher den-
sity of temporal spline basis functions at the beginning of the
simulated acquisition, when the activity concentrations were
changing most rapidly (Figure 3). The 60 sec initial time seg-
ment length provided basis functions spaced uniformly in time.
The cubic, quadratic, and linear B-splines allow modeling of
curves that are continuous through their second, first, and zeroth

derivative, respectively.

The computational benefits of factoring the matrixF into the
spatial basis projection factorsum

ij and the temporal basis inte-
gral factorsvn

jk were evident in the simulation. Rather than stor-
ing its more than 350 million elements, about 1.5 millionum

ij

andvn
jk factors were stored instead. The number of multiply-

and-adds used to calculateFTF was reduced from over 17 bil-
lion to less than 6 million. A set of time-activity curves was es-
timated directly from the 3.7 million simulated projection sam-
ples in about 2.3 min on a 194 MHz MIPS R10000-based Silicon
Graphics workstation. The calculations ofFTF andFTp∗ took
about 2.2 sec and 2.2 min, respectively.

Figures 5 and 6 depict the root mean square (RMS) differ-
ences between the simulated time-activity curves and the spline
curves estimated directly from noiseless projections, normalized
by the RMS values of the simulated curves and expressed as per-
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TABLE II

TEMPORAL SAMPLINGS USED IN THE SIMULATIONS INSECTION III-A. G IVEN AN INITIAL TIME SEGMENT LENGTH , A SCALING FACTOR WAS

CALCULATED AND USED TO GENERATE A SEQUENCE OF15 TIME SEGMENTS HAVING GEOMETRICALLY INCREASING LENGTH AND SPANNING A TOTAL OF

15 MIN .

initial segment
time scaling subsequent time segments (sec)

segment factor
(sec) 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2.5 1.39 3.5 4.8 6.7 9.4 13 18 25 35 49 68 95 130 180 250
5.0 1.31 6.5 8.6 11 15 19 25 33 43 56 74 96 130 170 220
10 1.23 12 15 18 23 28 34 42 51 63 77 95 120 140 170
20 1.14 23 26 30 34 39 45 51 58 67 76 87 100 110 130
40 1.06 42 45 47 50 52 55 58 62 65 69 72 77 81 85
60 1.00 60 60 60 60 60 60 60 60 60 60 60 60 60 60
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(a) Cubic B-spline modeling errors.
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(b) Quadratic B-spline modeling errors.
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(c) Linear B-spline modeling errors.
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(d) Constant B-spline modeling errors.

Fig. 5. Normalized RMS modeling errors for time-activity curves estimated directly from noiseless cone beam projections, using piecewise cubic (a), quadratic (b),
linear (c), and constant (d) B-spline basis functions (e.g., Figure 4) and initial time segment lengths ranging between 2.5–60 sec (Table II).
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(a) Cubic B-spline modeling errors.
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(b) Quadratic B-spline modeling errors.
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(c) Linear B-spline modeling errors.
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(d) Constant B-spline modeling errors.

Fig. 6. Same quantities as in Figure 5, for parallel beam projections.

centages. The temporal spline modeling errors were largest for
the septal and lateral defects, which had relatively small spatial
supports (Figure 2a) and low activity concentrations (Figure 3).
Intermediate errors resulted for the blood pool and background,
which had larger spatial supports but quickly decaying activity
concentrations. The errors were smallest for the normal my-
ocardium and liver, which had larger spatial supports and high
activity concentrations throughout the simulated data acquisi-
tion. The errors tended to increase as the length of the initial
time segment for the splines increased.

In most cases the temporal spline modeling errors for the
three myocardial volumes of interest and the blood pool were
smaller for the cone beam geometry than for the parallel beam
geometry, due to the increased relative sensitivity to those vol-
umes provided by the cone beam sampling. Errors for the back-
ground tissue were comparable for both geometries, while in
most cases the errors for the liver were larger for the cone beam
geometry. For the cone beam geometry and the relatively rapid

initial sampling provided by using initial time segment lengths
of 2.5, 5, or 10 sec, the errors for all six volumes ranged be-
tween 0.020–3.8%, 0.022–1.7%, 0.090–6.2%, and 1.6–64% for
the cubic, quadratic, linear, and constant B-splines, respectively
(Figure 5). The corresponding ranges of errors for the paral-
lel beam geometry were 0.020–4.9%, 0.022–2.7%, 0.089–6.8%,
and 1.6–62% (Figure 6). For the cone beam geometry and the
uniform time sampling provided by using an initial time seg-
ment length of 60 sec, the errors ranged between 0.45–50%,
0.48–53%, 0.65–60%, and 4.0–110% for the cubic, quadratic,
linear, and constant B-splines, respectively. The corresponding
ranges of errors for the parallel beam geometry were 0.37–69%,
0.41–73%, 0.58–83%, and 4.0–140%.

B. Kinetic Parameter Estimates

Of interest is how the temporal spline modeling errors bias the
estimates of kinetic parameters obtained from the directly esti-
mated time-activity curves. To study this we used the program
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TABLE III

KINETIC PARAMETERS OBTAINED FROM TIME-ACTIVITY CURVES ESTIMATED DIRECTLY FROM NOISELESS CONE BEAM PROJECTIONS USINGB-SPLINES

OF VARIOUS ORDER AND VARIOUS INITIAL TIME SEGMENT LENGTHS. UNITS FOR UPTAKEkm
21 AND WASHOUT km

12 ARE MIN−1 . VALUES FOR THE

DIMENSIONLESS VASCULAR FRACTIONfm
v AND THE BACKGROUND AMPLITUDE g ARE NOT SHOWN. VALUES WHICH DIFFERED FROM THE SIMULATED

VALUE BY ≥10% ARE SHOWN IN BOLDFACE TYPE.

cone beam

noiseless fit
simulated initial time segment length (sec)

2.5 5 10 20 40 60

normal k1
21 0.700 0.700 0.700 0.701 0.700 0.683 0.709

myocardium k1
12 0.150 0.150 0.150 0.150 0.150 0.149 0.155

septal k2
21 0.300 0.301 0.301 0.300 0.286 0.181 0.358

cubic defect k2
12 0.300 0.301 0.301 0.300 0.288 0.207 0.334

B-splines lateral k3
21 0.500 0.498 0.496 0.522 0.441 1.17 2.54

defect k3
12 0.600 0.599 0.598 0.616 0.565 0.942 1.75

liver k4
21 0.900 0.900 0.900 0.900 0.904 0.879 0.873

k4
12 0.0020 0.0020 0.0020 0.0020 0.0021 0.0016 0.0017

normal k1
21 0.700 0.701 0.701 0.700 0.700 0.684 0.708

myocardium k1
12 0.150 0.150 0.150 0.150 0.150 0.149 0.155

septal k2
21 0.300 0.303 0.302 0.300 0.297 0.183 0.350

quadratic defect k2
12 0.300 0.302 0.301 0.300 0.296 0.211 0.326

B-splines lateral k3
21 0.500 0.502 0.499 0.502 0.444 1.19 2.89

defect k3
12 0.600 0.602 0.598 0.603 0.561 0.957 1.87

liver k4
21 0.900 0.900 0.900 0.900 0.901 0.879 0.871

k4
12 0.0020 0.0020 0.0020 0.0020 0.0020 0.0016 0.0017

normal k1
21 0.700 0.703 0.700 0.702 0.698 0.687 0.708

myocardium k1
12 0.150 0.150 0.150 0.150 0.150 0.149 0.155

septal k2
21 0.300 0.295 0.292 0.308 0.301 0.170 0.335

linear defect k2
12 0.300 0.297 0.296 0.305 0.302 0.204 0.315

B-splines lateral k3
21 0.500 0.533 0.498 0.491 0.533 1.22 1.90

defect k3
12 0.600 0.602 0.578 0.585 0.626 0.990 1.32

liver k4
21 0.900 0.903 0.900 0.902 0.895 0.888 0.864

k4
12 0.0020 0.0020 0.0020 0.0020 0.0020 0.0018 0.0014

normal k1
21 0.700 0.688 0.685 0.681 0.682 0.717 0.641

myocardium k1
12 0.150 0.146 0.147 0.147 0.148 0.154 0.149

septal k2
21 0.300 0.317 0.275 0.265 0.379 0.252 0.082

constant defect k2
12 0.300 0.341 0.299 0.294 0.322 0.254 0.125

B-splines lateral k3
21 0.500 0.533 0.734 0.665 0.331 1.98 4.23

defect k3
12 0.600 0.635 0.833 0.660 0.553 1.36 2.09

liver k4
21 0.900 0.911 0.903 0.892 0.885 0.901 0.851

k4
12 0.0020 0.0027 0.0026 0.0020 0.0021 0.0029 0.0022

RFIT [27–29] to fit one-compartment kinetic models to the di-
rectly estimated time-activity curves for the three myocardial
volumes of interest and the liver, using the directly estimated
blood pool curve as the input function. The background tissue
activity was modeled to be proportional to the blood pool activ-
ity, and its amplitude was also estimated.

For the one-compartment kinetic model (Figure 1), the uptake
in tissue volumem is

Qm(t) = km
21

∫ t

0

B(τ)e−km
12(t−τ)dτ = km

21V
m(t), (12)

whereB(t) is the blood input function,km
21 is the uptake pa-

rameter, andkm
12 is the washout parameter. Total activity in the

tissue is given by

Qm(t) + fm
v B(t) = km

21V
m(t) + fm

v B(t), (13)

wherefm
v is the fraction of vasculature in the tissue. To fit one-

compartment models for the normal myocardium, septal defect,
lateral defect, and liver (denoted by indicesm = 1, 2, 3, and
4, respectively), RFIT varies the parameterskm

21, km
12, andfm

v to
minimize the unweighted sum of squares function

χ2
m =

J∑
j=1

K∑
k=1

{
N∑

n=1

âmnv
n
jk

−
∫ tjk

tjk−∆t

[km
21V̂

m(τ) + fm
v B̂(τ)]dτ

}2

,

(14)

where theâmn are given by equation (5),vn
jk is the inte-

gral of thenth temporal basis function during the time interval
[tjk−∆t, tjk] in which projection data are acquired at anglej of
rotationk, V̂ m(τ) is the convolution

∫ τ

0
B̂(τ ′)e−km

12(τ−τ ′)dτ ′,
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TABLE IV

SAME QUANTITIES AS IN TABLE III, FOR PARALLEL BEAM PROJECTIONS. VALUES WHICH DIFFERED FROM THE SIMULATED VALUE BY≥10% ARE

SHOWN IN BOLDFACE TYPE.

parallel beam

noiseless fit
simulated initial time segment length (sec)

2.5 5 10 20 40 60

normal k1
21 0.700 0.700 0.700 0.701 0.701 0.677 0.718

myocardium k1
12 0.150 0.150 0.150 0.150 0.149 0.148 0.158

septal k2
21 0.300 0.301 0.301 0.300 0.286 0.162 0.357

cubic defect k2
12 0.300 0.301 0.301 0.301 0.287 0.192 0.333

B-splines lateral k3
21 0.500 0.499 0.494 0.527 0.422 1.48 4.26

defect k3
12 0.600 0.599 0.596 0.619 0.551 1.07 2.30

liver k4
21 0.900 0.900 0.900 0.900 0.906 0.872 0.867

k4
12 0.0020 0.0020 0.0020 0.0020 0.0021 0.0015 0.0018

normal k1
21 0.700 0.701 0.701 0.700 0.700 0.678 0.719

myocardium k1
12 0.150 0.150 0.150 0.150 0.150 0.148 0.158

septal k2
21 0.300 0.304 0.301 0.301 0.296 0.162 0.347

quadratic defect k2
12 0.300 0.303 0.301 0.301 0.295 0.194 0.324

B-splines lateral k3
21 0.500 0.503 0.498 0.507 0.422 1.57 4.64

defect k3
12 0.600 0.603 0.597 0.607 0.545 1.12 2.37

liver k4
21 0.900 0.900 0.900 0.900 0.903 0.872 0.865

k4
12 0.0020 0.0020 0.0020 0.0020 0.0020 0.0016 0.0017

normal k1
21 0.700 0.704 0.700 0.702 0.697 0.681 0.719

myocardium k1
12 0.150 0.150 0.150 0.150 0.150 0.148 0.159

septal k2
21 0.300 0.296 0.291 0.309 0.306 0.158 0.327

linear defect k2
12 0.300 0.298 0.296 0.305 0.306 0.194 0.311

B-splines lateral k3
21 0.500 0.547 0.495 0.474 0.466 1.64 2.71

defect k3
12 0.600 0.609 0.574 0.571 0.575 1.18 1.57

liver k4
21 0.900 0.904 0.900 0.902 0.895 0.882 0.855

k4
12 0.0020 0.0020 0.0020 0.0020 0.0020 0.0018 0.0015

normal k1
21 0.700 0.679 0.677 0.683 0.682 0.721 0.658

myocardium k1
12 0.150 0.144 0.146 0.147 0.148 0.155 0.153

septal k2
21 0.300 0.249 0.261 0.259 0.401 0.266 0.071

constant defect k2
12 0.300 0.283 0.289 0.295 0.331 0.251 0.115

B-splines lateral k3
21 0.500 0.549 0.816 0.682 0.454 3.05 5.74

defect k3
12 0.600 0.644 0.892 0.653 0.727 1.70 2.22

liver k4
21 0.900 0.912 0.903 0.890 0.879 0.906 0.850

k4
12 0.0020 0.0028 0.0027 0.0019 0.0020 0.0034 0.0023

andB̂(τ) is derived from the directly estimated blood pool time-
activity curve (denoted by indexm = 6) as follows. Given
the set of time integrals,{∑N

n=1 â6nv
n
jk; j = 1, . . . , J ; k =

1, . . . ,K}, of the directly estimated blood pool curve, RFIT
models B̂(τ) as a piecewise linear function which interpo-
lates zero at timeτ = 0; the value

∑N
n=1 â6nv

n
jk/∆t at time

tjk− (∆t/2), for j = 1, . . . , J andk = 1, . . . ,K; and the value∑N
n=1 â6nv

n
JK/∆t at timetJK .

The amplitude,g, of the background tissue (denoted by in-
dexm = 5) is estimated by minimizing the unweighted sum of
squares function

χ2
5 =

J∑
j=1

K∑
k=1

{
N∑

n=1

â5nv
n
jk −

∫ tjk

tjk−∆t

gB̂(τ)dτ

}2

. (15)

Tables III and IV show the kinetic parameter estimates ob-
tained from the spline models for time-activity curves estimated
directly from noiseless projections. The biases in the uptake pa-

rameterskm
21 and the washout parameterskm

12 were particularly
small when using quadratic B-splines and initial time segment
lengths of 2.5, 5, or 10 sec. For these three time samplings,
the biases (calculated as the absolute value of the difference be-
tween the simulated and estimated values, normalized by the
simulated value and expressed as a percentage) ranged between
0.0–1.0% for the cone beam geometry (Table III) and 0.0–1.4%
for the parallel beam geometry (Table IV). For cubic B-splines
the biases were comparable, except for the case of the lateral
defect and an initial time segment length of 10 sec, which had
larger bias. For linear B-splines the biases were comparable for
the normal myocardium and the liver, and were larger for the
defects. Overall, the biases for the cubic and linear B-splines
ranged between 0.0–4.4% and 0.0–6.6%, respectively, for the
cone beam geometry and initial time segment lengths of 2.5, 5,
or 10 sec. For the parallel beam geometry the biases ranged
between 0.0–5.4% and 0.0–9.4%, respectively.

To study the effects of noisy projections on kinetic parameter
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(c) Septal defect.
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(d) Lateral defect.

Fig. 7. First of 100 noisy cone beam realizations: time-activity curves for (a) the blood pool, (b) the normal myocardium, (c) the septal defect, and (d) the lateral
defect, estimated using quadratic B-splines and an initial time segment length of 10 sec (Figure 4b). Samples of the simulated curves (Figure 3) are shown as
points. The solid and dotted curves were estimated from noiseless and noisy projections, respectively. The dashed curves in (b–d) are the kinetic model fits to
the noisy curves. The fitted kinetic parameters are listed in column (c) of Table V.

estimates obtained from spline time-activity curves, 100 real-
izations of projections having Poisson noise were generated for
both the cone beam and parallel beam geometries. The ampli-
tude of the simulated blood input function was adjusted so that
about 10 million events were detected using the cone beam col-
limators. With this same blood input function, about 6.4 million
events were detected using the parallel beam collimators. This
number of total detected events was selected so as to be less, on
a slice by slice basis, than the total of 4.8 million events which
were detected in the eleven 7.12 mm-thick slices analyzed in a
99mTc-teboroxime patient study [8]. Quadratic B-splines and
an initial time segment length of 10 sec were used to model the
time-activity curves. A two-tailedt test [30] was used to assess
the biases in the sample means of the kinetic parameter esti-
mates.

Figures 7 and 8 show the time-activity curves estimated for

the blood pool and the three myocardial volumes of interest, for
the first noisy realization of cone beam and parallel beam data,
respectively. For both the cone beam and parallel beam geome-
tries, the differences between the spline time-activity curves es-
timated directly from noiseless and noisy projections were rel-
atively small, for the blood pool and the normal myocardium.
For the septal and lateral defects, the differences between the
spline curves estimated directly from noiseless and noisy pro-
jections were relatively large. Noise in the spline curve coef-
ficients generated extended excursions (dotted lines) above and
below the noiseless spline curves (solid lines). The curves asso-
ciated with the one-compartment kinetic model fits to the noisy
spline curves provided smoother approximations (dashed lines)
to the noiseless spline curves. In all cases, the noiseless spline
curves provided relatively good fits to the samples of the simu-
lated curves.
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(b) Normal myocardium.
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(c) Septal defect.
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(d) Lateral defect.

Fig. 8. Same curves as in Figure 7, for parallel beam projections. The fitted kinetic parameters are listed in column (c) of Table VI.

Summaries of the results for all 100 noisy realizations are pre-
sented in Tables V and VI, for both the cone beam and paral-
lel beam geometries. For the cone beam geometry (Table V),
the sample means (column (d)) of the uptake parameterskm

21

and the washout parameterskm
12 for the normal myocardium and

the liver did not differ significantly from the simulated values
(P > 0.4). The sample standard deviations (column (e)) ranged
between 0.5–20%. The sample means of the uptake and washout
parameters for the septal and lateral defects were significantly
different from the simulated values (P < 0.05). The differences
between the sample means and the simulated values for the de-
fects ranged between 4.8–16%. The sample standard deviations
ranged between 22–42%.

For the parallel beam geometry (Table VI), the sample means
(column (d)) of the uptake parameterskm

21 for the normal my-
ocardium and the liver did not differ significantly from the sim-
ulated values (P > 0.05). The sample means of the washout
parameterskm

12 were significantly different from the simulated

values (P < 0.03), although the difference was only 0.7% for
the normal myocardium. The difference for the liver washout
was 10%. The sample standard deviations (column (e)) ranged
between 0.9–40%. The sample means of the uptake and washout
parameters for the septal and lateral defects were significantly
different from the simulated values (P < 0.03). The differences
between the sample means and the simulated values for the de-
fects ranged between 11–39%. The sample standard deviations
ranged between 40–140%.

C. Effects of Spatial Segmentation Errors

Having demonstrated that direct time-activity curve estimates
and subsequent kinetic parameter estimates are robust with re-
spect to the temporal B-spline basis function order and the ini-
tial time sampling, given noiseless data and faithful modeling of
the spatial distribution of activity and physical effects, we study
now the effects of spatial segmentation errors.

In practice, we expect to base the spatial segmentation on
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TABLE V

KINETIC PARAMETERS OBTAINED FROM TIME-ACTIVITY CURVES ESTIMATED DIRECTLY FROM CONE BEAM PROJECTIONS USING QUADRATICB-SPLINES

AND AN INITIAL TIME SEGMENT LENGTH OF 10 SEC(FIGURE 4B): (A) SIMULATED VALUES; (B) VALUES FROM NOISELESS PROJECTIONS; (C) VALUES

FROM THE FIRST OF100 NOISY REALIZATIONS; (D) SAMPLE MEANS AND (E) SAMPLE STANDARD DEVIATIONS FOR THE100 NOISY REALIZATIONS.

SAMPLE MEANS THAT WERE SIGNIFICANTLY DIFFERENT FROM THE SIMULATED VALUES(I .E., P < 0.05 FOR A TWO-TAILED t TEST) ARE LABELED WITH

ASTERISKS.

cone beam

noisy fits
simulated noiseless first sample sample

fit mean std dev
(a) (b) (c) (d) (e)

k1
21 0.700 0.700 0.697 0.700 0.0064

normal myocardium k1
12 0.150 0.150 0.151 0.150 0.0016

f1
v 0.150 0.150 0.149 0.150 0.011

k2
21 0.300 0.300 0.299 0.314* 0.072

septal defect k2
12 0.300 0.300 0.307 0.317* 0.066

f2
v 0.100 0.102 0.139 0.095 0.12

k3
21 0.500 0.502 0.628 0.578* 0.21

lateral defect k3
12 0.600 0.603 0.727 0.653* 0.16

f3
v 0.100 0.096 0.246 0.064* 0.17

k4
21 0.900 0.900 0.901 0.900 0.0046

liver k4
12 0.0020 0.0020 0.0029 0.0020 0.0004

f4
v 0.200 0.201 0.197 0.201 0.0047

background g 0.200 0.200 0.199 0.200 0.0010

TABLE VI

SAME QUANTITIES AS IN TABLE V, FOR PARALLEL BEAM PROJECTIONS. SAMPLE MEANS THAT WERE SIGNIFICANTLY DIFFERENT FROM THE SIMULATED

VALUES (I .E., P < 0.05 FOR A TWO-TAILED t TEST) ARE LABELED WITH ASTERISKS.

parallel beam

noisy fits
simulated noiseless first sample sample

fit mean std dev
(a) (b) (c) (d) (e)

k1
21 0.700 0.700 0.698 0.702 0.010

normal myocardium k1
12 0.150 0.150 0.148 0.151* 0.0031

f1
v 0.150 0.151 0.148 0.149 0.025

k2
21 0.300 0.301 0.322 0.337* 0.16

septal defect k2
12 0.300 0.301 0.397 0.333* 0.12

f2
v 0.100 0.100 -0.094 0.086 0.24

k3
21 0.500 0.507 1.102 0.694* 0.68

lateral defect k3
12 0.600 0.607 0.954 0.692* 0.40

f3
v 0.100 0.092 -0.276 0.059 0.33

k4
21 0.900 0.900 0.894 0.901 0.0082

liver k4
12 0.0020 0.0020 0.0014 0.0022* 0.0008

f4
v 0.200 0.201 0.198 0.201 0.0081

background g 0.200 0.200 0.198 0.200 0.0019

static functional images obtained by summing the late time
frames of the dynamic SPECT study, anatomical images ob-
tained from a transmission scan, and any other images of the pa-
tient that may be available (possibly from other modalities such
as X-ray computed tomography). We have developed and ap-
plied automated segmentation methods [31, 8], which are being
refined and validated as part of our ongoing research. Even with
a perfect segmentation of anatomy, nonuniform activity distri-
butions within individual organs must still be modeled. We con-
sider first the case where a perfect anatomical segmentation is
available, but there is a nonuniform activity distribution in the

myocardium due to defects. We then perform a preliminary in-
vestigation into the errors resulting from inaccurate localization
of the myocardial walls for a defect-free heart.

C.1 Failure to Segment Myocardial Defects

Using quadratic B-splines and an initial time segment length
of 10 sec, time-activity curves were estimated from noiseless
simulated cone beam data generated using the MCAT phantom
having defects in the septal and lateral walls of the left ventric-
ular myocardium (Figure 2a). However, the myocardial defects
were not included in the spatial segmentation used for estimat-
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Fig. 9. Effects of failure to segment myocardial defects. The underestimation of myocardial activity (a) results in spatial structure in the summed residuals for the
modeled projections (b), which is absent for faithfully modeled defects (c). The structure in the residuals is seen to correspond to the myocardium (d, e). In
(b–d), the summation is over all 120 angles for each of the 15 rotations, whereas in (e) the summation is over one angle per rotation. The increased noiselevels
in the lower portions of (b, c) are due to the relatively high activity concentration in the liver.

ing the time-activity curves, and the activity distribution was as-
sumed instead to be uniform throughout the entire myocardium.

Because of this failure to segment the myocardial defects, the
time-activity curve estimated for the myocardium was systemat-
ically low (Figure 9a) and had an RMS error of 4.9%, compared
to the error of 0.091% achieved using the faithful spatial seg-
mentation (Figure 5b). The RMS error for the blood pool curve
increased from 0.48% to 1.8%.

Using these time-activity curves, the estimates of the myocar-
dial uptake and washout parameters werek21 = 0.670 min−1

andk12 = 0.146 min−1, respectively, compared to the unbiased
estimatesk21 = 0.700 min−1 andk12 = 0.150 min−1 obtained
from the curves estimated using the faithful spatial segmentation
(Table III).

Despite these relatively small errors in quantitation, spatial
structure was evident in the residuals for the modeled pro-
jections, even for simulated noisy projection data containing
10 million detected events (Figure 9b). Thus, it may be pos-
sible in practice to detect spatial model mismatch resulting from
the failure to segment small myocardial defects, as well as to re-
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(d) Summed residuals for noisy data, eroded epicardium.

Fig. 10. Effects of inaccurate localization of the myocardial walls. In (a–d), the summation of the residuals for the modeled projections is over all 120 angles for
each of the 15 rotations. The increased noise levels in the lower portions of (a–d) are due to the relatively high activity concentration in the liver.

fine the segmentation iteratively in an effort to reduce the spatial
structure in the residuals for the modeled projections.

C.2 Inaccurate Localization of the Myocardial Walls

Using quadratic B-splines and an initial time segment length
of 10 sec, time-activity curves were estimated from noiseless
simulated cone beam data generated using the MCAT phantom
with a defect-free myocardium. Spatial model mismatches were
induced by either dilating or eroding the endocardial wall, or
dilating or eroding the epicardial wall. The wall location was
displaced by about 2.5 mm in each case by applying 3-D gray
scale dilation or erosion operators [32] as appropriate to voxel
maps of the indicator functions for the blood pool, myocardium,
and background tissue, prior to forward projecting the volumes
to calculate the spatial basis projection factorsum

ij .
The RMS errors for the time-activity curves estimated

using these incorrect spatial segmentations ranged between
15–23% for the myocardium and 2.8–30% for the blood pool.
The kinetic model parameters obtained from these curves
ranged between 0.537–0.961 min−1 for the uptakek21 and
0.051–0.288 min−1 for the washoutk12, compared to the unbi-
ased estimatesk21 = 0.700 min−1 andk12 = 0.150 min−1 ob-
tained from curves estimated using the faithful spatial segmen-
tation. In each case, spatial structure was evident in the residuals
for the modeled projections for simulated noisy projection data
containing 10 million detected events (Figure 10).

Thus, it appears that systematic errors in the gross segmenta-
tion of anatomy may have a larger effect on quantitation, than
does the failure to account for small nonuniformities in the ac-
tivity distributions within the individual organs. Further study
is needed to assess the accuracy with which the spatial segmen-

tation can be performed in practice. As was the case with the
failure to segment small myocardial defects, it may be possible
in practice to detect spatial model mismatch resulting from gross
myocardial segmentation errors, as well as to refine the segmen-
tation iteratively in an effort to reduce the spatial structure in the
residuals for the modeled projections.

IV. D ISCUSSION

The combination of gantry motion and the time-variation of
the radiopharmaceutical distribution being imaged results in in-
consistent dynamic SPECT projection data sets. In addition, the
use of cone beam collimators can result in insufficient, as well as
truncated, projection samples. Conventional kinetic model pa-
rameter estimation from time-activity curves generated by over-
laying volumes of interest on images reconstructed from these
projection data results in biases. The biases in the time-activity
curve estimates and the subsequent kinetic model parameter
estimates can be reduced significantly by estimating the time-
activity curves directly from the projections. Implementation
of this strategy requires a spatial and temporal model of the ra-
diopharmaceutical distribution throughout the projected field of
view.

Computational issues associated with fully 4-D direct esti-
mation of spatiotemporal distributions from dynamic SPECT
projection data have been addressed, so that least squares es-
timates of time-activity curves can be obtained quickly and ac-
curately using a workstation with a modest amount of memory.
Temporal B-splines were used to model the time-activity curves
for the blood pool and tissue volumes in simulated cone beam
and parallel beam cardiac data acquisitions. For noiseless data,
there were only minor differences between the curve models es-
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timated from the cone beam and the parallel beam data, as well
as minor differences between subsequent kinetic model param-
eter estimates. The direct time-activity curve estimates and sub-
sequent kinetic parameter estimates were robust with respect to
the temporal B-spline basis function order and the initial time
sampling, given noiseless data and faithful modeling of the spa-
tial distribution of activity and physical effects. For both the
cone beam and parallel beam geometries, RMS modeling errors
for the time-activity curves were less than 7% when using ei-
ther cubic, quadratic, or linear splines with initial time segment
lengths of either 2.5, 5, or 10 sec. Errors in uptake and washout
parameters for one-compartment kinetic models obtained from
these spline curves were less than 10%.

For small (3 cm diameter) myocardial defect regions exhibit-
ing reduced uptake and accelerated washout, biased estimates of
kinetic parameters for one-compartment models were obtained
for noisy data using quadratic B-splines and an initial time sam-
pling of 10 sec. The uptake and washout parameter estimates
obtained from noisy cone beam data had less bias (4.8–16%)
and variance (22–42%) than those obtained from noisy parallel
beam data (bias of 11–39%, variance of 40–140%). This was
presumably due to the increased sensitivity of the cone beam
collimators and their increased resolution at the center of tomo-
graph, near which the defects were imaged.

What remains to be investigated in more detail are the ef-
fects of the B-spline order and the initial time sampling on ki-
netic parameters obtained from time-activity curves estimated
directly from noisy projection data, as well as the impact of er-
rors in modeling the spatial distribution of activity and physi-
cal effects. For most of our simulations, we have assumed that
we have a perfect segmentation of a piecewise uniform activ-
ity distribution, faithful models for attenuation and geometric
point response, and that there is no scatter. Clearly, quanti-
tative accuracy will suffer in practice, when one has only ap-
proximate models for the spatial distribution of activity (as in
Section III-C) and physical effects.

Further study is needed to assess the accuracy with which the
spatial segmentation can be performed in practice. Even with
a perfect segmentation of anatomy, nonuniform activity distri-
butions within individual organs must still be modeled. For the
case where the activities are modeled to be uniform within the
individual volumes of the segmentation, this requires subdivid-
ing the segmentation into smaller volumes. A second approach
is to model nonuniform activities within the larger volumes by
selecting sets of spatial basis functions defined within the larger
volumes (e.g., spherical harmonics defined within the left ven-
tricular myocardium). Our future research in this area will fo-
cus on the second approach, used in conjunction with adaptive
refinement of the volume boundaries. Our future research will
also focus on improved modeling of physical effects, particu-
larly attenuation and scatter.

While accurate, precise quantitation is the ultimate goal, in-
accuracy and imprecision can be tolerated so long as one can
discriminate between healthy and diseased tissue. For example,
although our noisy data simulations yielded biased estimates of
uptake and washout parameters for the small myocardial defect
regions, the resulting kinetics were significantly different from
the kinetics obtained for the normal myocardium. Given esti-

mates of time-activity curves or kinetic parameters for two vol-
umes of interest, as well as estimates of the uncertainties and
correlations of the quantities and a measure of the goodness of
fit of the overall spatiotemporal model, one is at least in a po-
sition to make an objective comparison that can supplement a
subjective evaluation of the data.

The estimation of time-activity curves directly from projec-
tion data appears to be potentially useful for clinical SPECT
studies involving slowly rotating gantries, particularly those
which use a single-detector system or body contouring orbits
with a multi-detector system. The computationally efficient
methodology presented in Section II facilitates continued re-
search in this area. The algorithm developed in Section II can
also be used to solve quickly the linear least squares subprob-
lem embedded in the nonlinear estimation problem which we
formulated in [5–7], thereby facilitating future research into es-
timating kinetic parameters directly from projection data. This
includes the joint estimation of a temporal model for the blood
input function and kinetic parameters for compartmental models
directly from projection data, as well as the parameterization of
spatially nonuniform activity concentrations within segmented
volumes encompassing the projected field of view.
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